
Py-GC-MS calibration standards
Neat polymer powders and polymer-matrix blends
Tailored Py-GC-MS calibration standards designed specifically for quantitative pyrolysis gas chromatography mass spectrometry analysis. Our single-polymer and 7 & 14 polymer kit standards offer precise concentration control from 1.0 µg/mg to 50 µg/mg, enabling reliable calibration curve development. Each standard features sieved microplastic fragments (<50 µm) ensuring consistent particle homogeneity across sample aliquots. All standards include matching blank controls for accurate baseline correction and comprehensive certificates of analysis with full traceability data. Available in 0.15 g, 0.5 g and 1.0 g formats, each sample provides multiple runs.
Webshop
Tailored Py-GC-MS calibration standards
Neat polymer powder
From 150 mg aliquots of dry, neat powder
Calibration standards supplied as high-purity polymer powders, available in 15 different polymer types.
Ideal for direct Py-GC-MS calibration or for preparing custom dispersions and solutions tailored to specific workflows. As neat powders, they can be readily adapted for method development, recovery tests, spike additions, and positive controls.


Polymer-matrix blend
From 1.0 µg/mg (0.1 %) to 50 µg/mg (5.0 %)
Flexible calibration standards consisting of high-purity polymer-matrix blends, covering 15 polymer types blended into a CaCO₃ or SiO₂ matrix.
Ideal for direct Py-GC-MS calibration or for preparing custom dispersions and solutions tailored to specific workflows. As neat powders, they can be readily adapted for method development, recovery tests, spike additions, and positive controls.

Our Py-GC-MS calibration standards are composed of carefully selected polymers representative of environmental micro- and nanoplastic pollution. Each polymer batch is sieved through a 300-mesh screen (<50 µm) to ensure particle size uniformity and homogeneity across aliquots. The polymer-matrix blends are subjected to high-energy vortex mixing for 5 minutes. This step is followed by 4 hours of vertical rotation with a knocking effect to loosen any powder adhering to the container. Finally, the sample is horizontally rolled with a swivel effect for 10 hours to thoroughly homogenize the contents (see figure below). Eight 304 stainless steel beads ranging from Ø = 2.0 mm to 5.5 mm are included throughout all mixing steps to enhance homogenization. All final samples include three Ø = 3.0 mm 316L stainless steel beads employed in the final mixing process.

Available polymer types
Polyethylene

The most widely produced plastic.
HDPE: ~15–20% of global plastic production; rigid, strong; bottles, pipes, crates.
LDPE: ~10%; flexible, transparent; bags, films, coatings.
Common pyrolysis markers
🔥Alkenes (C10, C12, C14 and C21).
Polypropylene

~20% of global production; common in packaging, automotive parts, textiles.
Common pyrolysis markers
🔥2,4-Dimethyl-1-heptene (key diagnostic).
🔥2,4-Dimethyl-1-heptane.
Polyvinyl chloride

~10% of global production; important for pipes, construction work, irrigation systems.
Common pyrolysis markers
🔥Benzene (major product, from dehydrochlorination).
Polyethylene terephthalate

~7% of global production; beverage bottles, textiles.
Common pyrolysis markers
🔥Vinyl benzoate
🔥Benzoic acid
🔥Terephthalic acid dimethyl ester / dimethyl terephthalate
🔥Acetophenone (supportive).
Polystyrene
Polycarbonate

<2% of global production; optics, electronics, glazing.
Common pyrolysis markers
🔥Bisphenol A (core marker)
🔥p-Isopropenylphenol
🔥p-Isopropylphenol, Phenol (supportive).

~6% of global production; packaging, insulation, disposables.
Common pyrolysis markers
🔥Styrene dimers and trimers (main identifiers).
Acrylonitrile butadiene styrene

~2% of global production; housings, automotive, toys.
Common pyrolysis markers
🔥Styrene unit: Styrene α-Methylstyrene Indene
🔥Acrylonitrile unit: Acrylonitrile Benzonitrile 2-Cyanostyrene
🔥Butadiene unit: 1,3-Butadiene 4-Vinylcyclohexene (butadiene dimer) Cyclopentadiene
Polymethyl methacrylate

<1% of global production; displays, glazing, optics.
Common pyrolysis markers
🔥Methyl methacrylate (MMA, monomer) → almost complete depolymerization.
🔥Methyl isobutyrate (minor).
Polyamide 6

Polyamide 6 (PA6): ~2% global production; clothing, automotive, fishing gear.
Common pyrolysis markers
🔥Caprolactam (dominant marker)
🔥Cyclopentanone
🔥5-Cyanovaleramide
🔥ε-Aminocapronitrile (supportive)
Polyamide 6,6
~2% of global production; automotive, machinery, textiles.
Common pyrolysis markers
🔥Cyclopentanone.
🔥Adiponitrile (from adipic acid unit).
🔥Caprolactam (sometimes from secondary reactions).
🔥 Hexamethylenediamine fragments (amines).

Polyurethane

~7% of global production; foams, coatings, adhesives.
Common pyrolysis markers
🔥4,4′-Methylenedianiline (MDA) (aromatic diisocyanates, e.g. MDI-based PU).
🔥Toluene diamine (TDA) (if TDI-based PU).
🔥Phenyl isocyanate derivatives.
🔥Polyol-related fragments (alcohols, glycols)
[Thermoset]
Polyurethane
<1%; sportswear, cables, films.
Common pyrolysis markers
🔥4,4′-Methylenedianiline (MDA) or toluene diamine (TDA), depending on isocyanate used (MDI vs. TDI)
🔥Polyether fragments → typically tetrahydrofuran (THF), 1,4-butanediol, and other ether cleavage products
🔥 Phenyl isocyanate derivatives (from isocyanate hard segments)

[Thermoplastic]
Styrene butadiene rubber
35–45% synthetic rubber production; tire tread material; commonly used as a proxy for road tire wear.
Common pyrolysis markers
🔥Styrene.
🔥Butadiene-derived fragments (e.g. butadiene, butene).
🔥Ethylbenzene (secondary reactions).
🔥 Toluene and other alkylbenzenes..

Polyacrylonitrile
<1% of global polymer production; primarily used in carbon-fiber precursors, acrylic fibers, and technical textiles.
Common pyrolysis markers
🔥Acrylonitrile.
🔥Acetonitrile.
🔥Hydrogen cyanide (HCN).
🔥Nitrile-containing fragments (C≡N).

Polytetrafluoroethylene
<0.1% of global polymer production; high-performance fluoropolymer used in coatings, seals, cables, and chemical-resistant components. Commonly known as Teflon®; classified as a polymeric PFAS.
Common pyrolysis markers
🔥Tetrafluoroethylene (TFE).
🔥Hexafluoropropylene (HFP).
🔥Perfluoroalkenes and fluorocarbon fragments.
🔥CF₂-containing ions (e.g. CF₂⁺)

microplasticsolution.com
+ 33 6 72 05 29 17
Addresses:
Administrative HQ: 9 rue des enfants d'Izieu, 31320 Castanet-Tolosan, France.
Laboratory: 6 impasse Dordac, 31650 Saint-Orens-de-Gameville, France.
© 2026 SAS Microplastic Solution. All rights reserved
Est. 2024




